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TEXT-TO-SPEECH (TTS) TECHNOLOGY
Concept

• The system synthesizing speech waveform from given input text

Application area

3

Text Speech
Speech synthesizer

Navigation AI speaker Audiobook Ai Call Speech translation



GENERAL ARCHITECTURE OF TTS SYSTEM
Overview
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GENERAL ARCHITECTURE OF TTS SYSTEM
Overview

• Acoustic model
• Generate speech's acoustic feature from input text
• Acoustic features?

• Mel-spectrogram, pitch, energy, or spectral envelope, etc.
• Famous models

• Tacotron [1] and FastSpeech [2]
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GENERAL ARCHITECTURE OF TTS SYSTEM
Overview
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[End-to-end TTS system]

• Neural vocoder
• Synthesize speech waveform from generated acoustic features
• Famous models

• WaveNet [3] and Parallel WaveGAN [4]
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Topic today!



NEURAL VOCODER
OVERVIEW
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NEURAL VOCODER
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Θ̂= argmax
Θ
p(x |h,Θ)

[Training phase]

Optimize network parameters 
to maximize the likelihood of speech waveform

x̂ ~ p(x |h,Θ̂)

[Inference phase]

Sample speech waveform from 
estimated speech likelihood
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NEURAL VOCODER
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Θ
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[Training phase]

Optimize network parameters 
to maximize the likelihood of speech waveform
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Then, how does it define 𝒑(𝐱|𝐡, 𝚯)?



NEURAL VOCODER
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Θ̂= argmax
Θ
p(x |h,Θ)

[Training phase]

Optimize network parameters 
to maximize the likelihood of speech waveform

x̂ ~ p(x |h,Θ̂)

[Inference phase]

Sample speech waveform from 
estimated speech likelihood

Neural 
Vocoder
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Generative model is essential!
Then, how does it define 𝒑(𝐱|𝐡, 𝚯)?



NEURAL VOCODER
AUTOREGRESSIVE MODELS
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AR NEURAL VOCODER
Probability model

• Factorize speech's probability as a product of conditional 
probabilities for given past speech samples

Inputs
• (1) Acoustic features 
• (2) Previously generated samples

Output

• Probability of current speech sample
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[Concept of AR vocoder]

𝑝 𝑥! 𝐱"!, 𝐡 = 𝑁𝑒𝑢𝑟𝑎𝑙𝑉𝑜𝑐𝑜𝑑𝑒𝑟(𝐱"!, 𝐡)

p(x |h)= p(xn | x<n ,h)
n=0

T−1

∏
Neural vocoder's target



WAVENET VOCODER
First AR generative model for raw waveform [3]

Key feature
• Multiply stacked dilated causal convolution layers 

• Exponentially increase the receptive field
• Effectively capture speech's long-term correlation problem

Various types of WaveNet vocoder
• 𝜇-law WaveNet [5]
• Mixture density network (MDN)-based WaveNet [1, 10]
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Receptive field = # layer −"

[WaveNet with standard causal convolution]

Receptive field = !# layer − #

[WaveNet with dilated causal convolution]

Dilated
Convolution

à Depending on how to define the speech distribution



VARIOUS WAVENET VOCODERS
𝜇-law WaveNet [5] 

• Re-define speech distribution as discretized symbols
• (1) Apply 𝜇-law companding to obtain evenly distributed speech signal

• (2) Apply 8-bit one-hot encoding

• Discretize speech sample in 256 symbols

• Use WaveNet to solve multi-class classification problem
• Predict discretized speech symbols

• Optimize to minimize cross-entropy (CE) loss

• Advantages
• Provide better quality than conventional rule-based vocoders

• Free from rule-based vocoder’s heuristic signal processing pipeline
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VARIOUS WAVENET VOCODERS
Limitation of 𝜇-law WaveNet 

• Noisy synthetic speech due to rough quantization of waveform

Naive solution
• Consider that waveform is usually discretized by 16-bits quantization method
à Expand the softmax dimension to 65,536 (=2"#)

Mixture density network (MDN)-based solution [1, 10]
• Train the WaveNet to predict the parameter of pre-defined speech distribution
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Expensive computational cost & difficult to train



MDN-WaveNet 
• Define the speech distribution as mixture of Gaussian (MoG) distribution

• Use WaveNet for MDN modeling [6]
• Predict mixture parameters

• Optimize network by negative log-likelihood (NLL) loss

VARIOUS WAVENET VOCODERS
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MDN-WAVENET
Advantage

• Enable to model the continuously distributed speech waveform
à Provide higher quality than 𝝁-law WaveNet

Problem
• Difficult to train due to increased target distribution’s degree of freedom

Solution based on the human’s speech production model [7]
• Model the vocal source signal, whose physical behavior is much simpler than the speech signal
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Mixture density network

[Spectrogram comparison] [Loss comparison]



SPEECH PRODUCTION MODEL
Source-filter theory of speech production [7]

• Modeling the speech as the filtered output of vocal source signal to vocal tract filter
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[ ]( ) ( ) ( ) ( ) ( )S z G z V z R z E z= × × ×
Speech = [vocal fold × vocal tract × lip radiation] × excitation

[Speech production model]



SPEECH PRODUCTION MODEL
Decouple vocal source & tract by using linear prediction (LP) analysis [7]

• Define speech signal as linear combination of past speech samples
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[Spectral deconvolution through LP analysis]
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LP-STRUCTURED MDN
Mathematical assumption for AR vocoder

• Consideration about linear prediction term, 𝑝$
1. Previous speech samples, 𝐱"!, are given
2. LP coefficients, {𝛼#}, indicating spectral envelope of speech, are given

• Random variables (RVs) of speech 𝑋$ and excitation 𝐸$

• Parametrize RVs by using mean and variance
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Linear prediction Mixture density network
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Difference between 𝑋! and 𝐸! is only mean parameter



LP-STRUCTURED MDN
LP-MDN

• Formulate the relationship between speech and excitation within MDN approach [8]

• (1) Predict MoG parameters of excitation signal by using neural vocoder

• (2) Shift only mean parameters by 𝑝$

• (3) Compute likelihood of speech signal
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Linear prediction Mixture density network
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LP-WAVENET VOCODER
LP-WaveNet = MDN-WaveNet + LP-MDN [8]

1. Mixture parameter prediction

2. Compute linear prediction term

3. Mixture parameter modification

4. MoG likelihood calculation

5. Train the network to minimize NLL loss
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LP-WAVENET VOCODER
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[Speech production model]

Modeled by LP-MDN

Only need to be trained

Training efficiency will be improved!



LP-WAVENET VOCODER
Training efficiency

• Comparing to MDN-WaveNet

24

1. About 2 times faster training speed

2. Converged at lower loss



LP-WAVENET VOCODER
Subjective evaluation results

• Mean opinion score (MOS) test
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ITFTE: Baseline rule-based vocoder [10]
WN!: 𝜇-law WaveNet estimating speech signal
WN": 𝜇-law WaveNet estimating excitation signal
WN#$: LP-WaveNet

A/S: analysis / synthesis

TTSA/S

Score Quality Impairment

5 Excellent Imperceptible

4 Good
Perceptible but 
not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying

[Scoring criteria for MOS test]

Provided significantly higher quality 
than conventional vocoders



LP-WAVENET VOCODER
Industrial contribution to Naver’s various TTS services

Limitation
• Very slow inference speed due to AR generation process

• e.g., 300 real-time factor (RTF) even in V100 GPU environment

• Unsuitable for real-time TTS service
• e.g., Audiobook synthesis or controllable TTS, etc

26

Navigation AI speaker Ai Call News reading

𝑘 RTF: 𝑘 sec. is required to synthesize 1 sec. of speech



LP-WAVENET VOCODER
Industrial contribution to Naver’s various TTS services

Limitation
• Very slow inference speed due to AR generation process

• e.g., 300 real-time factor (RTF) even in V100 GPU environment

• Unsuitable for real-time TTS service
• e.g., Audiobook synthesis or controllable TTS, etc
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Navigation AI speaker Ai Call News reading

𝑘 RTF: 𝑘 sec. is required to synthesize 1 sec. of speech

Developing real-time and high-quality neural vocoder
has become important.



NEURAL VOCODER
NON-AUTOREGRESSIVE MODELS
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NON-AR NEURAL VOCODER
Probability model

• Ignore dependency between adjacent speech samples

Inputs
• Acoustic features

Output

• Generate entire speech samples in parallel

Limitation
• Worse quality than AR neural vocoder
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[Concept of non-AR vocoder]

𝑝 𝐱 𝐡 = 𝑁𝑒𝑢𝑟𝑎𝑙𝑉𝑜𝑐𝑜𝑑𝑒𝑟(𝐡)

Neural vocoder's target

p(x |h)= p(xn |h)
n=0

T−1

∏

Non-AR
Vocoder

Acoustic
Feature

Speech
Waveform

Enable parallel training/generation of waveform



NON-AR NEURAL VOCODER
Why non-AR model is worse than AR model?
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[AR model] [Non-AR model]

𝑝(𝑥!|𝐱"!, 𝐡) 𝑝(𝑥!|𝐡)



NON-AR NEURAL VOCODER
Why non-AR model is worse than AR model?
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[AR model] [Non-AR model]

𝑝(𝑥!|𝐱"!, 𝐡) 𝑝(𝑥!|𝐡)

Contextual information helps vocoder 
to learn waveform distribution

High quality! J



NON-AR NEURAL VOCODER
Why non-AR model is worse than AR model?
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[AR model] [Non-AR model]

𝑝(𝑥!|𝐱"!, 𝐡) 𝑝(𝑥!|𝐡)

Vocoder should learn speech distribution 
relying on only acoustic features

Unsatisfactory quality! L



NON-AR NEURAL VOCODER
Why non-AR model is worse than AR model?
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[AR model] [Non-AR model]

How to bridge the gap between AR and non-AR vocoders?
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NON-AR NEURAL VOCODER
Teacher-student framework-based solution
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[AR model] [Non-AR model]

AR
Vocoder

Acoustic
Feature

Speech
Waveform

Previous
Speech
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Non-AR
Vocoder

Acoustic
Feature

Speech
Waveform

Knowledge 
Distillation

Transfer well-trained AR vocoder’s performance to non-AR vocoder



PARALLEL WAVENET (PWN)
First non-AR vocoder based on teacher-student framework [10]

Guide non-AR WaveNet (=student) to learn
speech distribution predicted by AR WaveNet (=teacher)



PARALLEL WAVENET (PWN)
First non-AR vocoder based on teacher-student framework [10]

Well-distilled student WaveNet can generate high-quality waveform 
while maintaining its fast generation speed (ex. 0.02 RTF)

𝑘 RTF: 𝑘 sec. is required to synthesize 1 sec. of speech



PARALLEL WAVENET (PWN)
Limitation

Firstly, teacher model should be trained

Then, student model can be trained

Two-stage training pipeline inevitably results in a long training period L
Ex. WaveNet (7.4 days) vs. Parallel WaveNet (12.7 days)



PARALLEL WAVEGAN (PWG)
Non-AR vocoder without teacher-student framwork [4]

• Remove knowledge distillation process
• Instead, incorporate generative adversarial networks (GAN) framework

Key features
• (1) Non-causal WaveNet generator

• Enable real-time waveform generation

• (2) Adversarial training
• Help the generator to produce realistic waveform

• (3) Multi-resolution short-time Fourier transform (MR-STFT) loss
• Effectively capture time-frequency characteristics of target speech

Pros and cons
• Fast synthesis speed (e.g., 0.02 RTF)
• Easy to train (e.g., 3 days)
• Low quality of synthesized speech
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[Concept of PWG]
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SPECTROGRAM EXAMPLE
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Recording WaveNet (AR) PWG (Non-AR)
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HN-PWG VOCODER
Adopt harmonic-plus-noise (HN) model [12] to the PWG’s generator

• HN model?
• speech = harmonic component + noise component

40

= Periodic, deterministic = Aperiodic, stochastic

Speech

Harmonic
Component

Noise
Component

Harmonic-plus-Noise Parallel WaveGAN



HN-PWG VOCODER
Adopt harmonic-plus-noise (HN) model [12] to the PWG’s generator

• Split WaveNet generator to two sub-WaveNet generators
1. Harmonic WaveNet (H-WaveNet) à Generate harmonic component
2. Noise WaveNet (N-WaveNet)       à Generate noise component
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Speech
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HN-PWG VOCODER
Adopt harmonic-plus-noise (HN) model [12] to the PWG’s generator

• Method to impose harmonic & noise characteristics
• Feeding harmonic- and noise-like sources to their WaveNets, respectively
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Speech
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Harmonic-plus-Noise Parallel WaveGAN



HN-PWG VOCODER
Concept of HN-PWG [12]

Source signal designs
1. Harmonic WaveNet

• Give harmonic (=periodic) characteristic by using sinusoidal source signal

• Design source signal to have instantaneous frequency of pitch contour

2. Noise WaveNet
• Give noise (=aperiodic) characteristic by using Gaussian noise source signal
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HN-PWG VOCODER
Speech sample
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Harmonic source Recording

Output speech

Noise source
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Harmonic-plus-Noise Parallel WaveGAN



MULTI-BAND HN-PWG VOCODER
Consideration for the improvement of HN-PWG

• Harmonic-noise property of speech signal
• Low frequency band

• Harmonic characteristic > Noise characteristic
• High frequency band

• Harmonic characteristic < Noise characteristic

45

Very harmonic

Very noisy

Less harmonic

Less noisy

Introduce this harmonic-noise property to the HN-PWG



MULTI-BAND HN-PWG VOCODER
Multi-band HN-PWG [13]
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Step 1.
Generate harmonic component 𝐱1 and noise component 𝐱$ by using H- and N-WaveNets
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MULTI-BAND HN-PWG VOCODER
Multi-band HN-PWG [12]
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Step 2.
Decompose generated harmonic-noise components into their subband signals 
by using windowed sinc function-based band-pass filters (BPF; 𝐠2)

xh,i = xh! ĝi
xn,i = xn! ĝi

where   gi[k]= 2 fi+1sinc(2π fi+1k)−2 fisinc(2π fik),

            ĝi[k]= gi[k]⋅whamm[k]



MULTI-BAND HN-PWG VOCODER
Multi-band HN-PWG [12]

48

Step 3.
Estimate subband harmonicity from acoustic features

Then, adjust gain of subband signals weighted by subband harmonicity
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{αi}= sigmoid(CNN (h))

x̂h,i =αi ⋅xh,i
x̂n,i = (1−αi ) ⋅xh,i



MULTI-BAND HN-PWG VOCODER
Multi-band HN-PWG [12]
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Step 4.
Sum all of subband signals

x=
i=0

N−1

∑[x̂h,i+ x̂n,i]
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MULTI-BAND HN-PWG VOCODER
Spectrogram comparison with HN-PWG

• HN-PWG

• Multi-band HN-PWG
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Harmonic component Noise component

Harmonic component Noise component



EXPERIMENTS
Results

51

Model Model size ↓
(M)

Inference speed ↓
(RTF)

MOS ↑
Analysis / synthesis 

scenario
TTS 

scenario

WaveNet 3.81 294.12 4.22 4.03
PWG 0.94 0.02 3.46 3.56
HN-PWG 0.94 0.02 4.18 4.01
Multi-band HN-PWG 0.99 0.02 4.29 4.03
Recordings - - 4.41

PWG: Parallel WaveGAN
HN-PWG: Harmonic-plus-noise PWG
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1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.
2. Use of HN model didn’t affect the model size and inference speed.
3. Conventional PWG showed worse quality than WaveNet.

PWG: Parallel WaveGAN
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3. Conventional PWG showed worse quality than WaveNet.
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EXPERIMENTS
Results
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Model Model size ↓
(M)

Inference speed ↓
(RTF)

MOS ↑
Analysis / synthesis 

scenario
TTS 

scenario

WaveNet 3.81 294.12 4.22 4.03
PWG 0.94 0.02 3.46 3.56
HN-PWG 0.94 0.02 4.18 4.01
Multi-band HN-PWG 0.99 0.02 4.29 4.03
Recordings - - 4.41

1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.
2. Use of HN model didn’t affect the model size and inference speed.
3. Conventional PWG showed worse quality than WaveNet.
4. However, its quality was significantly improved by adopting HN model.
5. Use of multi-band HN model improved quality of HN-PWG, and even better than AR WaveNet.

PWG: Parallel WaveGAN
HN-PWG: Harmonic-plus-noise PWG



SPEECH SAMPLES
Recorded

HiFi-GAN [13]: state-of-the-art non-AR vocoder

Multi-band HN-PWG (Analysis/synthesis)

Multi-band HN-PWG (TTS)
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WaveNet (MDN) [6]

• First AR vocoder for speech waveform
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[WaveNet]

WaveNet

Feature

Waveform

Past samples

J Good quality
L Slow generation speed
L Difficult to train
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LP-WaveNet [9]

• Adopt LP-MDN to WaveNet
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WaveNet

Feature

Waveform

Past samples

LP-MDN

[LP-WaveNet]

J Even better quality
L Slow generation speed
J Easy to train
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Parallel WaveNet [11]

• Non-AR WaveNet with teacher-student framework
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Teacher
AR WaveNet

Feature

Waveform

Past samples

Student
Non-AR
WaveNet

Feature

WaveformNoise

Knowledge
Distillation

J Good quality
J Fast generation speed
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Parallel WaveGAN (PWG) [4]

• Non-AR WaveNet with GAN framework
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[PWG]

Non-AR
WaveNet

Feature

Noise Discriminator Real or
FakeWaveform

L Bad quality
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Quality
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Efficiency
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Harmonic-plus-noise PWG [13]

• Adopt HN model to PWG
• Proposed full-band and multi-band models
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[HN-PWG]

J High quality
J Fast generation speed
J Easy to train

Replaced the role of LP-WaveNet, and applied to Naver’s TTS services

Harmonic
WaveNetSine

Feature

Noise
WaveNetNoise

Waveform Discriminator Real or
Fake

Quality

Generation
Speed

Training 
Efficiency
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