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INTRODUCTION
Text-to-Speech (TTS) technology

• The system synthesizing speech waveform from given input text

Application area
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INTRODUCTION
TTS system overview

• Acoustic model
• Generate speech's acoustic feature from input text
• Acoustic features?

• Mel-spectrum / pitch / energy / voicing information, ...
• Famous model [1, 2]

• Tacotron / FastSpeech, ...

• Neural vocoder
• Synthesize speech waveform from generated acoustic features
• Famous model [3]

• WaveNet..
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[End-to-end TTS system]

[1] Shen et. al., “Natural TTS synthesis by conditioning wavenet on mel spectrogram predictions,” in CoRR, 2017.
[2] Ren at al., "FastSpeech: Fast, Robust and Controllable Text to Speech," in NeurIPS, 2019
[3] Aaron et al., "WaveNet: A Generative Model for Raw Audio," in Arxiv, 2016
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NEURAL VOCODER
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NEURAL VOCODER
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WAVENET
Autoregressive (AR) modeling for audio waveform [3]

• Input
• Acoustic features
• Previously generated waveform samples

Key structure
• Stack of dilated causal convolution

• Result in exponentially growing receptive field
• Effectively capture speech’s long-term dependency property

Advantage
• Provide significantly better synthesis quality than 

conventional vocoders
Problem

• Very slow generation speed
• 300 real-time factor (RTF)

= require 300 sec. for synthesizing 1 sec. of speech
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p(x |h)= p(xn | x<n ,h)
n=0

T−1

∏
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Causal convolution 
with 1 dilation

[WaveNet]

[Concept of AR vocoder]

[3] Aaron et al., "WaveNet: A Generative Model for Raw Audio," in Arxiv, 2016



PARALLEL WAVEGAN (PWG)
WaveNet for non-AR neural vocoder [4]

• Input

• Acoustic features

• Gaussian noise

Key structure 
• (1) Non-causal WaveNet + (2) Adversarial training

Advantage
• Very fast synthesis speed 

• 0.02 RTF = 15,000 times faster than WaveNet

Problem
• Unstable, and low quality of synthesized speech
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p(x |h)= p(xn |h)
n=0

T−1

∏
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[Concept of non-AR vocoder]

[PWG]

Acoustic
Feature

Non-causal
WaveNet
Generator

Discriminator

Generated
Speech

Recorded
Speech

Real or Fake

Prevent quality degradation     
caused by non-AR modeling

Enable fast generation

[4] R. Yamamoto et. al., "Parallel WaveGAN: A Fast Waveform Generation Model Based on Generative Adversarial Networks with Multi-Resolution Spectrogram," in Proc. ICASSP, 2020.



SPECTROGRAM EXAMPLE
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HARMONIC-PLUS-NOISE PWG (HN-PWG)
Adopt harmonic-plus-noise (HN) model to the PWG’s generator

• HN model [5]?
• speech = harmonic component + noise component
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= Periodic, deterministic = Aperiodic, stochastic

[5] Y. Stylianou, “Modeling speech based on harmonic plus noise models,” in Nonlinear Speech Modeling and Applications. Springer Berlin Heidelberg, 2005.
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HARMONIC-PLUS-NOISE PWG (HN-PWG)
Adopt harmonic-plus-noise (HN) model [5] to the PWG’s generator

• Split WaveNet generator to two sub-WaveNet generators
1. Harmonic WaveNet (H-WaveNet) à Generate harmonic component
2. Noise WaveNet (N-WaveNet)       à Generate noise component
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HARMONIC-PLUS-NOISE PWG (HN-PWG)
Adopt harmonic-plus-noise (HN) model [5] to the PWG’s generator

• Method to impose harmonic & noise characteristics
• Feeding harmonic- and noise-like sources to their WaveNets, respectively
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HARMONIC-PLUS-NOISE PWG (HN-PWG)
Concept of HN-PWG

Source signal designs
1. H-WaveNet

• Give harmonic (=periodic) characteristic by using sinusoidal source signal

• Design source signal to have instantaneous frequency of pitch contour

2. N-WaveNet
• Give noise (=aperiodic) characteristic by using Gaussian noise source signal
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HARMONIC-PLUS-NOISE PWG (HN-PWG)
Concept of HN-PWG

Additional sources
1. H-WaveNet

• Sequence of voicing flag (V/UV)
• Enable each WaveNet to be effectively aware of voicing state

• Gaussian noise
• Empirically improve synthesis quality

2. N-WaveNet
• Sequence of V/UV
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HARMONIC-PLUS-NOISE PWG (HN-PWG)
Speech sample
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MULTI-BAND HN-PWG
Motivation to further improve HN-PWG’s performance

• Consider harmonic-noise property of speech signal
• Low frequency band

• Harmonic characteristic > Noise characteristic
• High frequency band

• Harmonic characteristic < Noise characteristic
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Very harmonic

Very noisy

Less harmonic

Less noisy

Introduce this harmonic-noise property to the HN-PWG



MULTI-BAND HN-PWG
Multi-band HN-PWG
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Step 1.
Generate harmonic component x" and noise component x# by using H- and N-WaveNets
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MULTI-BAND HN-PWG
Multi-band HN-PWG
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Step 2.
Decompose generated harmonic-noise components into their subband signals 
by using windowed sinc function-based band-pass filters (BPF; !")

xh,i = xh! ĝi
xn,i = xn! ĝi

where   gi[k]= 2 fi+1sinc(2π fi+1k)−2 fisinc(2π fik),

            ĝi[k]= gi[k]⋅whamm[k]



MULTI-BAND HN-PWG
Multi-band HN-PWG
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Step 3.
Estimate subband harmonicity from acoustic features

Then, adjust gain of subband signals weighted by subband harmonicity
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{αi}= sigmoid(CNN (h))

x̂h,i =αi ⋅xh,i
x̂n,i = (1−αi ) ⋅xh,i



MULTI-BAND HN-PWG
Multi-band HN-PWG
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Step 4.
Sum all of subband signals

x=
i=0

N−1

∑[x̂h,i+ x̂n,i]
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MULTI-BAND HN-PWG
Spectrogram comparison with HN-PWG

• HN-PWG

• Multi-band HN-PWG
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SUMMARY
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[WaveNet]

AR model for speech waveform
J Good quality
L Slow generation speed
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SUMMARY
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Noise PWG Speech

Features

Non-AR WaveNet + GAN framework
J Fast generation speed
L Unsatisfactory synthesis quality

[PWG]



SUMMARY
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SUMMARY
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EXPERIMENTS
Database

• Korean female speaker
• Sampling rate / quantization

• 24-kHz / 16-bit
• Acoustic features

• Improved time-frequency trajectory excitation (ITFTE) vocoder [6]

Neural vocoders
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Model Use of 
HN model

Input signals for
H-WaveNet

Type of 
HN model

WaveNet - - -
PWG - - -
HN-PWG w/o noise Yes Sine + V/UV Full-band
HN-PWG Yes Sine + noise + V/UV Full-band
Multi-band HN-PWG Yes Sine + noise + V/UV Multi-band

[6] E. Song, et. al., “Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems,” in IEEE/ACM Trans. ASLP, 2017.



EXPERIMENTS
Evaluation metrics

• Model size
• Number of parameters consisting neural vocoder

• Inference speed
• Measure real-time factor (RTF) on single V100 GPU

• Mean opinion score (MOS) listening test
• Score the subjective quality of speech (from 1.0 to 5.0)

• Analysis / synthesis scenario
• Use ground-truth acoustic features

• TTS scenario
• Use generated acoustic features from TTS model
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[Scoring criteria for MOS test]



EXPERIMENTS
Results
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Model Model size ↓
(M)

Inference speed ↓
(RTF)

MOS ↑
Analysis / synthesis 

scenario
TTS 

scenario
WaveNet 3.81 294.12 4.22 4.03
PWG 0.94 0.02 3.46 3.56
HN-PWG w/o noise 0.94 0.02 4.02 2.60
HN-PWG 0.94 0.02 4.18 4.01
Multi-band HN-PWG 0.99 0.02 4.29 4.03
Recordings - - 4.41
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1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.
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2. Use of HN model didn’t affect the model size and inference speed.
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1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.
2. Use of HN model didn’t affect the model size and inference speed.
3. Conventional PWG showed worse quality than WaveNet.
4. However, its quality was significantly improved by adopting HN model.
5. In TTS scenario, the quality of HN-PWG became severely degraded when the noise source is not used for 

H-WaveNet.
6. Use of multi-band HN model improved quality of HN-PWG, and even better than AR WaveNet.



SUMMARY & CONCLUSION
Proposed Harmonic-plus-Noise (HN) Parallel WaveGAN (PWG) vocoder

Problems of conventional vocoders
• WaveNet: Good quality, but slow speed
• PWG: Fast speed, but unsatisfactory quality

Proposed HN-PWG = Fast and high-quality neural vocoder
• HN-PWG

• Apply HN model to PWG’s generator architecture 
• Multi-band HN-PWG

• Apply multi-band HN model to HN-PWG

Experimental results
• Provided significantly better quality than conventional vocoders while maintaining fast synthe

sis speed
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SUMMARY & CONCLUSION
Will be published at the conference of Interspeech 2021

More questions
• min-jae.hwang@navercorp.com
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