ENGINEERING DAY

Harmonic-plus-Noise Parallel WaveGAN 빠르고, 품질 좋은 WaveNet 음성 합성기 만들기

황민제 / HDTS

CLOVA

CONTENTS

Introduction

• Text-to-Speech

Neural vocoder

Parallel WaveGAN

Proposed method

Harmonic-plus-Noise Parallel WaveGAN

Experiments

Summary & Conclusion

INTRODUCTION

Text-to-Speech (TTS) technology

Speech synthesizer

Speech

• The system synthesizing speech waveform from given input text

Application area

INTRODUCTION

TTS system overview

- Acoustic model
 - · Generate speech's acoustic feature from input text
 - Acoustic features?
 - Mel-spectrum / pitch / energy / voicing information, ... •
 - Famous model [1, 2]
 - Tacotron / FastSpeech, ...
- Neural vocoder
 - Synthesize speech waveform from generated acoustic features
 - Famous model [3]
 - WaveNet..

[3] Aaron et al., "WaveNet: A Generative Model for Raw Audio," in Arxiv, 2016

^[1] Shen et. al., "Natural TTS synthesis by conditioning wavenet on mel spectrogram predictions," in CoRR, 2017. [2] Ren at al., "FastSpeech: Fast, Robust and Controllable Text to Speech," in NeurIPS, 2019

NEURAL VOCODER

[Training phase]

[Inference phase]

Optimize network parameters to maximize the likelihood of speech waveform

Sample speech waveform from estimated speech likelihood

NEURAL VOCODER

Optimize network parameters to maximize the likelihood of speech waveform Sample speech waveform from estimated speech likelihood

NEURAL VOCODER

WAVENET

Autoregressive (AR) modeling for audio waveform [3]

 $p(\mathbf{x} \mid \mathbf{h}) = \prod_{n=0}^{T-1} p(x_n \mid \mathbf{x}_{< n}, \mathbf{h})$

- Input
 - Acoustic features
 - Previously generated waveform samples

Key structure

- Stack of dilated causal convolution
 - · Result in exponentially growing receptive field
 - Effectively capture speech's long-term dependency property

Advantage

• Provide significantly better synthesis quality than conventional vocoders

Problem

- Very slow generation speed
 - 300 real-time factor (RTF)
 - = require 300 sec. for synthesizing 1 sec. of speech

[Concept of AR vocoder]

PARALLEL WAVEGAN (PWG)

WaveNet for non-AR neural vocoder [4]

 $p(\mathbf{x} \mid \mathbf{h}) = \prod_{n=0}^{T-1} p(x_n \mid \mathbf{h})$

- Input
 - Acoustic features
 - Gaussian noise

Key structure

 (1) Non-causal WaveNet + (2) Adversarial training *Enable fast generation Prevent quality degradation caused by non-AR modeling*

Advantage

- · Very fast synthesis speed
 - 0.02 RTF = 15,000 times faster than WaveNet

Problem

• Unstable, and low quality of synthesized speech

[Concept of non-AR vocoder]

ດ

SPECTROGRAM EXAMPLE

Recording

Frequency

Time

WaveNet (AR)

Time

PWG (Non-AR)

Time

Adopt harmonic-plus-noise (HN) model to the PWG's generator

Adopt harmonic-plus-noise (HN) model [5] to the PWG's generator

- Split WaveNet generator to two sub-WaveNet generators
 - 1. Harmonic WaveNet (H-WaveNet) → Generate harmonic component
 - 2. Noise WaveNet (N-WaveNet) \rightarrow Generate noise component

Adopt harmonic-plus-noise (HN) model [5] to the PWG's generator

- Method to impose harmonic & noise characteristics
 - Feeding harmonic- and noise-like sources to their WaveNets, respectively

Concept of HN-PWG

[HN-PWG]

Source signal designs

- 1. H-WaveNet
 - Give harmonic (=periodic) characteristic by using sinusoidal source signal

$$s[t] = \sin\left(\sum_{k=1}^{t} 2\pi \frac{f_k}{F_s} + \phi\right)$$

• Design source signal to have instantaneous frequency of pitch contour

2. N-WaveNet

• Give noise (=aperiodic) characteristic by using Gaussian noise source signal

Concept of HN-PWG

[HN-PWG]

Additional sources

- 1. H-WaveNet
 - Sequence of voicing flag (V/UV)
 - Enable each WaveNet to be effectively aware of voicing state
 - Gaussian noise
 - Empirically improve synthesis quality
- 2. N-WaveNet
 - Sequence of V/UV

Speech sample

16

Motivation to further improve HN-PWG's performance

- Consider harmonic-noise property of speech signal
 - · Low frequency band
 - Harmonic characteristic > Noise characteristic
 - · High frequency band
 - Harmonic characteristic < Noise characteristic

Introduce this harmonic-noise property to the HN-PWG

Multi-band HN-PWG

Step 1.

Generate harmonic component x_h and noise component x_n by using H- and N-WaveNets

Multi-band HN-PWG

Step 2.

Decompose generated harmonic-noise components into their subband signals by using windowed sinc function-based band-pass filters (BPF; g_i)

 $\mathbf{x}_{h,i} = \mathbf{x}_h \circledast \hat{\mathbf{g}}_i$ $\mathbf{x}_{n,i} = \mathbf{x}_n \circledast \hat{\mathbf{g}}_i$ where $g_i[k] = 2f_{i+1}\operatorname{sinc}(2\pi f_{i+1}k) - 2f_i\operatorname{sinc}(2\pi f_ik),$ $\hat{g}_i[k] = g_i[k] \cdot w_{hamm}[k]$

19

Multi-band HN-PWG

Step 3.

Estimate subband harmonicity from acoustic features

 $\{\alpha_i\} = sigmoid(CNN(\mathbf{h}))$

Then, adjust gain of subband signals weighted by subband harmonicity

$$\hat{\mathbf{x}}_{h,i} = \alpha_i \cdot \mathbf{x}_{h,i}$$
$$\hat{\mathbf{x}}_{n,i} = (1 - \alpha_i) \cdot \mathbf{x}_{h,i}$$

Multi-band HN-PWG

Step 4. Sum all of subband signals

$$\mathbf{x} = \sum_{i=0}^{N-1} [\hat{\mathbf{x}}_{h,i} + \hat{\mathbf{x}}_{n,i}]$$

Spectrogram comparison with HN-PWG

• HN-PWG

Multi-band HN-PWG

[WaveNet]

AR model for speech waveform

☺ Good quality

⁽³⁾ Slow generation speed

[PWG]

Non-AR WaveNet + GAN framework

Fast generation speed
Unsatisfactory synthesis quality

Adopt HNM to the PWG generator

Adopt Multi-band HNM to the PWG generator

Database

- Korean female speaker
- Sampling rate / quantization
 - 24-kHz / 16-bit
- Acoustic features
 - Improved time-frequency trajectory excitation (ITFTE) vocoder [6]

Model	Use of HN model	Input signals for H-WaveNet	Type of HN model
WaveNet	-	-	-
PWG	-	-	-
HN-PWG w/o noise	Yes	Sine + V/UV	Full-band
HN-PWG	Yes	Sine + noise + V/UV	Full-band
Multi-band HN-PWG	Yes	Sine + noise + V/UV	Multi-band

Neural vocoders

Evaluation metrics

- Model size
 - · Number of parameters consisting neural vocoder
- Inference speed
 - Measure real-time factor (RTF) on single V100 GPU
- Mean opinion score (MOS) listening test
 - Score the subjective quality of speech (from 1.0 to 5.0)
 - Analysis / synthesis scenario
 - Use ground-truth acoustic features
 - TTS scenario
 - Use generated acoustic features from TTS model

[Scoring criteria for MOS test]

Score	Quality	Impairment	
5	Excellent	Imperceptible	
4 Good		Perceptible but not annoying	
3 Fair		Slightly annoying	
2 Poor		Annoying	
1 Bad Very annoying		Very annoying	

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	-	_	4.41	

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	-	_	4.41	

1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	_	_	4.41	

- 1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.
- 2. Use of HN model didn't affect the model size and inference speed.

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	-	_	4.41	

1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.

2. Use of HN model didn't affect the model size and inference speed.

3. Conventional PWG showed worse quality than WaveNet.

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	-	_	4.41	

1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.

- 2. Use of HN model didn't affect the model size and inference speed.
- 3. Conventional PWG showed worse quality than WaveNet.

4. However, its quality was significantly improved by adopting HN model.

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	-	-	4.41	

1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.

- 2. Use of HN model didn't affect the model size and inference speed.
- 3. Conventional PWG showed worse quality than WaveNet.
- 4. However, its quality was significantly improved by adopting HN model.

5. In TTS scenario, the quality of HN-PWG became severely degraded when the noise source is not us ed for H-WaveNet.

Results

Model	Model size↓ (M)	Inference speed↓ (RTF)	MOS 1	
			Analysis / synthesis scenario	TTS scenario
WaveNet	3.81	294.12	4.22	4.03
PWG	0.94	0.02	3.46	3.56
HN-PWG w/o noise	0.94	0.02	4.02	2.60
HN-PWG	0.94	0.02	4.18	4.01
Multi-band HN-PWG	0.99	0.02	4.29	4.03
Recordings	-	_	4.41	

- 1. Non-AR models provided significantly faster synthesis speed and smaller network size than AR-WaveNet.
- 2. Use of HN model didn't affect the model size and inference speed.
- 3. Conventional PWG showed worse quality than WaveNet.
- 4. However, its quality was significantly improved by adopting HN model.
- 5. In TTS scenario, the quality of HN-PWG became severely degraded when the noise source is not used for H-WaveNet.
- 6. Use of multi-band HN model improved quality of HN-PWG, and even better than AR WaveNet.

SUMMARY & CONCLUSION

Proposed Harmonic-plus-Noise (HN) Parallel WaveGAN (PWG) vocoder

Problems of conventional vocoders

- WaveNet: Good quality, but slow speed
- PWG: Fast speed, but unsatisfactory quality

Proposed HN-PWG = Fast and high-quality neural vocoder

- HN-PWG
 - · Apply HN model to PWG's generator architecture
- Multi-band HN-PWG
 - · Apply multi-band HN model to HN-PWG

Experimental results

 Provided significantly better quality than conventional vocoders while maintaining fast synthe sis speed

SUMMARY & CONCLUSION

Will be published at the conference of Interspeech 2021

More questions

• min-jae.hwang@navercorp.com

References

[1] Shen et. al., "Natural TTS synthesis by conditioning wavenet on mel spectrogram predictions," in CoRR, 2017.

[2] Y. Ren et. al., "FastSpeech 2: Fast and High-Quality End-toEnd Text to Speech," in Arxiv, 2020.

[3] Aaron et al., "WaveNet: A Generative Model for Raw Audio," in Arxiv, 2016

[4] R. Yamamoto et. al., "Parallel WaveGAN: A Fast Waveform Generation Model Based on Generative Adversarial Networks with Multi-Resolution Spectrogram," *in Proc. ICASSP*, 2020.

[5] Y. Stylianou, "Modeling speech based on harmonic plus noise models," in Nonlinear Speech Modeling and Applications. Spring er Berlin Heidelberg, 2005.

[6] E. Song, et. al., "Effective spectral and excitation modeling techniques for LSTM-RNN-based speech synthesis systems," in IEE E/ACM Trans. ASLP, 2017.

Thank you!