TTS-driven Data Augmentation 가짜 목소리 DB로 고품질 음성 합성기를 만들어보자!

황민제 / HDTS

CONTENTS

Introduction

• Text-to-Speech?

Proposed method

• TTS-driven data augmentation

Experiments

Summary & Conclusion

INTRODUCTION

Text-to-Speech (TTS) ?

Speech synthesizer

Speech

• The system synthesizing speech waveform from given input text

Application area

END-TO-END TTS SYSTEM

Concept

- Acoustic model
 - · Generate speech's acoustic feature from input text
 - Acoustic features?
 - Mel-spectrum / pitch / energy / voicing information, ...
 - Famous model [1, 2]
 - Tacotron / FastSpeech, ...
- Neural vocoder
 - Synthesize speech waveform from generated acoustic features
 - Famous model [3]
 - WaveNet..

[3] Aaron et al., "WaveNet: A Generative Model for Raw Audio," in Arxiv, 2016

 ^[1] Shen et. al., "Natural TTS synthesis by conditioning wavenet on mel spectrogram predictions," in *CoRR*, 2017.
[2] Ren at al., "FastSpeech: Fast, Robust and Controllable Text to Speech," in *NeurIPS*, 2019
[2] Agree at al., "WaveNet: A Concerting Model for Days Audio," in *Argin*, 2016.

ACOUSTIC MODELS FOR END-TO-END TTS

Autoregressive (AR) approach vs. Non-AR approach

	Autoregressive model	Non-autoregressive model
Generation type	Sequential	Non-sequential
Advantage ©	High quality	Fast generation
Disadvantage 😕	Slow generation	Not good quality

ACOUSTIC MODELS FOR END-TO-END TTS

Autoregressive (AR) approach vs. Non-AR approach

Key idea: Let's utilize data augmentation method!

• **Transplant** the quality of AR TTS system to Non-AR TTS system

 \sim

Method

Step 1. Train well designed *source TTS* system

[Training stage]

Method

Step 2. Generate large-scale TTS database

Method

Method

Requirement

• Stably generate high quality speech signal

Architecture [1, 4]

• Tacotron2 with duration predictor & linear prediction (LP)-WaveNet vocoder

Requirement

• Stably generate high quality speech signal

Architecture [1, 4]

• Tacotron2 with duration predictor & linear prediction (LP)-WaveNet vocoder

- 1. Extract linguistic features (LFs) from input text
- 2. Estimate duration of each phoneme
- 3. Upsample LFs to have resolution of acoustic features (AFs)
 - Free from attention failures, e.g., skipping, repetition, collapsing

Stable!

Requirement

• Stably generate high quality speech signal

Architecture [1, 4]

• Tacotron2 with duration predictor & linear prediction (LP)-WaveNet vocoder

4. Extract high-level context features

Requirement

• Stably generate high quality speech signal

Architecture [1, 4]

• Tacotron2 with duration predictor & linear prediction (LP)-WaveNet vocoder

- 5. Sequentially generate AFs
- 6. Line spectral frequencies (LSFs) sharpening process
 - Improving spectral clarity of speech signal

Requirement

• Stably generate high quality speech signal

Architecture [1, 4]

• Tacotron2 with duration predictor & linear prediction (LP)-WaveNet vocoder

- 6. Synthesize speech waveform
- 7. Distribution sharpening process
 - Reduce randomness of generated waveform

TARGET TTS SYSTEM

SUMMARY OF TTS SYSTEMS

Model	Acoustic model	Neural vocoder	Synthesis speed
Source TTS	Tacotron2 w/ duration predictor (AR)	LP-WaveNet (AR)	578 times slower than real time
Target TTS	FastSpeech2 (Non-AR)	Parallel WaveGAN (Non-AR)	54 times faster than real time

Database

- Korean female speaker
- Sampling rate / quantization
 - 24-kHz / 16-bit
- Recorded database
 - Train / validation / test : 5 / 1 / 0.5 hours
- Augmented database
 - Train / validation : 170 / 8 hours
- Experimental condition
 - Trained models by using various combination of database
 - Case 1) Recorded DB Case 2) Augmented DB Case 3) Recorded DB + augmented DB

Loss curve of target FastSpeech2

When the data augmentation is applied...

- 1. Achieved lower loss value *Better modeling accuracy!*
- 2. Achieved smaller gap between train / valid set *Better generalization performance!*

Experiment 1

- Mean opinion score (MOS) test
 - Score the quality of speech (from 1.0 to 5.0)
 - 14 native Korean listeners
 - 20 synthesized utterances from test set

MOS test results

Model	Analysis / synthesis	Training database	MOS
Recordings	-	-	4.67±0.11
	Yes	-	4.19±0.15
Source ITS	-	Only recorded	4.09±0.17
Target TTS	Yes	-	3.84±0.21
	-	Only recorded	2.70±0.27
	-	Only augmented	3.50±0.27
	-	Both recorded & augmented	3.78±0.23

[Scoring criteria for MOS test]

Score	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Experiment 1

- Mean opinion score (MOS) test
 - Score the quality of speech (from 1.0 to 5.0)
 - 14 native Korean listeners
 - 20 synthesized utterances from test set

• MOS test results

Model	Analysis / synthesis	Training database	MOS
Recordings	-	-	4.67±0.11
	Yes	-	4.19±0.15
Source ITS	-	Only recorded	4.09±0.17
Target TTS	Yes	- -	3.84±0.21
	-	Only recorded	2.70±0.27
	-	Only augmented	3.50±0.27
	-	Both recorded & augmented	3.78±0.23

1. AR TTS system performed better than Non-AR TTS system.

[Scoring criteria for MOS test]

Score	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Experiment 1

- Mean opinion score (MOS) test
 - Score the quality of speech (from 1.0 to 5.0)
 - 14 native Korean listeners
 - 20 synthesized utterances from test set

• MOS test results

Model	Analysis / synthesis	Training database	MOS
Recordings	-	-	4.67±0.11
	Yes	-	4.19±0.15
Source ITS	-	Only recorded	4.09±0.17
Target TTS	Yes	-	3.84±0.21
	-	Only recorded	2.70±0.27
	-	Only augmented	3.50±0.27
	-	Both recorded & augmented	3.78±0.23

1. AR TTS system performed better than Non-AR TTS system.

2. Perceptual quality of Non-AR TTS was improved when the augmented DB was used.

[Scoring criteria for MOS test]

Score	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Experiment 1

- Mean opinion score (MOS) test
 - Score the quality of speech (from 1.0 to 5.0)
 - 14 native Korean listeners
 - 20 synthesized utterances from test set

[Scoring criteria for MOS test]

Score	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

MOS test results

Model	Analysis / synthesis	Training database	MOS
Recordings	-	-	4.67±0.11
	Yes		4.19±0.15
Source ITS	-	Only recorded	4.09±0.17
Target TTS	Yes	-	3.84±0.21
	-	Only recorded	2.70±0.27
	-	Only augmented	3.50±0.27
	-	Both recorded & augmented	3.78±0.23

1. AR TTS system performed better than Non-AR TTS system.

2. Perceptual quality of Non-AR TTS was improved when the augmented DB was used.

3. When both recorded & augmented DB were used, quality of Non-AR TTS reached to analysis / synthesis case.

Experiment 2

- Assume enough amount of source DB
 - Use 20 hours of source DB
- MOS test results

Model	Training database	MOS
Recordings	-	4.67±0.11
Source TTS	Only recorded	4.28±0.16
Target TTS (5hrs)	Only recorded	2.70±0.27
	Only recorded	3.32±0.40
Target TTS (20hrs)	Only augmented	3.58±0.33
	Both recorded & augmented	3.90±0.24

Experiment 2

- Assume enough amount of source DB
 - Use 20 hours of source DB
- MOS test results

Model	Training database	MOS
Recordings	-	4.67±0.11
Source TTS	Only recorded	4.28±0.16
Target TTS (5hrs)	Only recorded	2.70±0.27
-	Only recorded	3.32±0.40
Target TTS (20hrs)	Only augmented	3.58±0.33
	Both recorded & augmented	3.90±0.24

1. When the non-AR TTS is trained by more DB, its perceptual quality was significantly improved.

Experiment 2

- Assume enough amount of source DB
 - Use 20 hours of source DB
- MOS test results

Model	Training database	MOS
Recordings	_	4.67±0.11
Source TTS	Only recorded	4.28±0.16
	Only recorded	2.70±0.27
Target TTS (20hrs)	Only recorded	3.32±0.40
	Only augmented	3.58±0.33
	Both recorded & augmented	3.90±0.24

- 1. When the non-AR TTS is trained by more DB, its perceptual quality was significantly improved.
- 2. However, its quality was still worse than AR-TTS system.

Experiment 2

- Assume enough amount of source DB
 - Use 20 hours of source DB

MOS test results

Model	Training database	MOS
Recordings	_	4.67±0.11
Source TTS	Only recorded	4.28±0.16
Target TTS (5hrs)	Only recorded	2.70±0.27
	Only recorded	3.32±0.40
Target TTS (20hrs)	Only augmented	3.58±0.33
	Both recorded & augmented	3.90±0.24

- 1. When the non-AR TTS is trained by more DB, its perceptual quality was significantly improved.
- 2. However, its quality was still worse than AR-TTS system.
- 3. Similar with the case of 5 hours, Non-AR TTS could be improved by applying data augmentation method.

SPEECH SAMPLES

Recorded

Source TTS (only natural DB)

Target TTS (only natural DB)

Target TTS (only augmented DB)

Target TTS (both recorded DB & augmented DB)

SUMMARY & CONCLUSION

Summary

• Proposed a TTS-driven data augmentation method for fast & high quality TTS system

Autoregressive (AR) TTS vs. Non-AR TTS

- AR TTS : High quality, but slow synthesis speed
- Non-AR TTS : Fast synthesis speed, but low quality

TTS-driven data augmentation method

- Augment TTS DB by using high quality AR TTS system
- Train Non-AR TTS system by using augmented DB for improving its quality

Performance evaluation results

- Significantly improved the performance of Non-AR TTS system
 - From 2.70 MOS to 3.78 MOS by using only 5 hours training DB

Thank you!