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Traditional WaveNet WaveNet
Text-to-speech Vocoder
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INTRODUCTION

Story of WaveNet vocoder
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Text-to-speech

CLASSICAL TTS SYSTEMS

Unit-selection speech synthesis [1]

Statistical parametric speech synthesis (SPSS) [2]

- a
*B_F
==

« Concatenate tiny segment of real speech
signal

* Pros) High quality
« Cons) Low controllability, large database

Linguistic feature

y

Acoustic
model

Acoustic feature

Y

Vocoder synthesis

'

Synthesized speech

« Parameterize speech signal using vocoder
technique

* Pros) High controllability, small database
« Cons) Low quality
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GENERATIVE MODEL-BASED SPEECH SYNTHESIS

WaveNet [3]

* First generative model for raw audio waveform

p(x) =H p(x, 1X.,)

» Predict the probability distribution of waveform sample auto-regressively

» Generate high quality of audio / speech signal
* Impact on the task of TTS, voice conversion, music synthesis, etc.

WaveNet in TTS task

« Utilize linguistic features and FO
contour as a conditional information

* Present higher quality than the
conventional TTS systems

Speech

distribuﬁon US English Mandarin Chinese

F 3

4,55
4.21 4.21
WaveNet a.08
3.86
3.79
T 3.67

Linguistic features, 3.47

FO Contour Concatenative Parametric WaveNet Human Speech Concatenative Parametric WaveNet Human Speech

[WaveNet speech synthesis]
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WAVENET VOCODER-BASED SPEECH SYNTHESIS

Utilize WaveNet as parametric vocoder [4]

Linguistic Acoustic
Text feature Acoustic feature WaveNet

Text — . Speech
analysis model vocoder

[WaveNet vocoder based parametric speech synthesis]

* Use acoustic features as conditional information

Advantages
« Higher quality synthesized speech than the conventional vocoders

* Don’t require hand-engineered processing pipeline

« Higher controllability than the case of linguistic features
« Controlling acoustic features

« Higher training efficiency than the case of linguistic features
* Linguistic feature: 25~35 hour database

« Acoustic feature: 1 hour database Conventional WaveNet
Recorded
vocoder vocoder
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WaveNet

MDN-WaveNet ExcitNet LP-WaveNet
Vocoder

>
2017 2017 2018 2019

VARIOUS TYPES OF WAVENET VOCODERS

. SoftMax-WaveNet
MDN-WaveNet
ExcitNet

Proposed LP-WaveNet
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BASIC OF WAVENET

Auto-regressive generative model

 Predict probability distribution of speech samples
N
p(X) = H p(Xn | Xn—R:n—l)
n=1

+ Use past waveform samples as a condition information of WaveNet

Problem: Long-term dependency nature of speech signal

» Highly correlated speech signal in high sampling rate, e.g. 16000 Hz
* E.g. 1) Atleast 160 (=16000/100) speech samples to represent 100Hz of voice correctly
* E.g. 2) Averagely 6,000 speech samples to represent single word?

Effective embedding method of long receptive field is required

SOIU“O” Ynzxnfd-hO-'_xn-hl
« Put the speech samples as an input of dilated causal convolution layer
 Stack the dilated causal convolution layer / ‘
* Result in exponentially growing receptive field L
xn—d xn

[Dilated causal convolution]

* 1 Statistics based on the average speaking rate of a set of TED talk speakers (®))
1' YONSEI UNIVERSITY http://sixminutes.dlugan.com/speaking-rate/



BASIC OF WAVENET

WaveNet without dilation

S
/1
07

X

L

L

X X

n—-6  Xn-s n—4 n-3

Receptive field

[WaveNet without dilated convolution]
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BASIC OF WAVENET

WaveNet with dilation

p(xn ‘ Xn—R:n—l)

* Dilated convolution
with 4 dilation

* * ' Dilated convolution
with 2 dilation

Xng Xu7 X X5 Xy X3

Dilated convolution
with 1 dilation

Receptive field

[WaveNet with dilated convolution]
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X . input of activation
h: conditional vector

BAS I c o F WAVE N ET z: output of activation

Output of Multiple stack of residual blocks

current
residual block

1
jl

Output

1. Dilated causal convolution

y[d,n] = th[k]x[n —d k]

Residual block

-  Exponentially increase the receptive field
Gated 1x1 conv. 2. Gated activation
activation
: z = tanh (W, *x+V, *h) ©sigmoid (W, *x+V, *h)
1x1 conv. Ny 9 g
2x1 * Impose non-linearity on the model
dcllarfid  Enable conditional WaveNet
I | 3. Residual / skip connections
Acoustic Causal » Speed up the convergence
features conv. Output of « Enable deep layered model training
previous
I residual block
Input

[Basic WaveNet architecture]
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SOFTMAX-WAVENET

Use WaveNet as multinomial logistic regression model [4]

« u-law companding for evenly distributed speech sample

In (1+,u|x|)
In(1+ 1)
 8-bit one-hot encoding

p = OneHotg, (Y)

y =sign(x) - , (=255

* 256 symbols

Estimate each symbol using WaveNet
z% =WaveNet(q_, | h)

o _ EXP(z)
" Y exn(z))

» Predict the sample by SoftMax distribution

Optimize network by cross-entropy (CE) loss

L=>[-p,logq,]
* Minimize the probabilistic distance between p,, and g,

YONSEI UNIVERSITY

=)
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—— Before companding
—— After companding

/ ﬁ
u‘o.q‘ o mw

-1 -0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Value

[Distribution of speech samples]

r(q,lq.,.h)

SoftMax()
z "‘
'a N
WaveNet
\_
q()’f T
Acoustic
features, h

[SoftMax-WaveNet]
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SOFTMAX-WAVENET

Limitation by the usage of 8-bit quantization

* Noisy synthetic speech due to insufficient number of quantization bits

Recorded WaveNet

1. 1.7 1.8 1.9 2 21 22 R 2.4 1.6 1.7 1.8 1.9 2 2.1

time (s) time (s)

Intuitive solution

« Expand the SoftMax dimension to 65,536 corresponds to 16-bit quantization
—-> High computational cost & difficult to train

Mixture density network (MDN)-based solution [5]

» Train the WaveNet to predict the parameter of pre-defined speech distribution

14
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o . logistic function
Mixture density network

MDN-WAVENET

Define the distribution of waveform sample as parameterized form [5]

 Discretized mixture of logistic (MoL) distribution

N - '/-\\l — —
p(x):Zﬂn‘{a(“A,’ 'fﬂ‘%ﬁj—a(%ﬂ ROy
n=1\“"” ‘\sn :‘ sn A
+ Discretized logistic mixture with 16bit quantization (A = 1/216) _ _
Mixture Density Network
: . (MDN)
Estimate mixture parameters by WaveNet
b s n
[z", z*, z°]=WaveNet(x_,, h)
Soft-
max() Exp()
7 = softmax(z”) , for unity-summed mixture gain —1 —F ,
n= z* s
_ s " .
s=exp(z®), for positive value of mixture scale WaveNet
Optimize network by negative log-likelihood (NLL) loss — i
L=>"[~log p(x, | .., )] e b

[MDN-WaveNet]

15
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Mixture density network

MDN-WAVENET

Higher quality than SoftMax-WaveNet Recorded | SeftMax MDN
WaveNet WaveNet

« Enable to model the speech signal by 16-bit
* Overcome difficulty of spectrum modeling

Difficulty of WaveNet training

* Due to increased quantization bit from 8-bit to 16-bit

Solution based on the human speech production model [6]

* Model the vocal source signal, whose physical behavior is much simpler than the speech signal

Recorded 4000 MDN-WaveNet . SoftMax-WaveNet , MDN-WaveNet
= 7000 | :
6000 6.5
5000
4000 | 2 6
3000 [ _
2000 3 - 5.5
1000 [ =
0 1.5 5
1 2 3 4 5 6 7 1 2 3 4 5 6 7
time (s) iter. x10° iter. x10°
[Spectrogram comparison] [Loss comparison]
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SPEECH PRODUCTION MODEL

Concept

* Modeling the speech as the filtered output of vocal source signal to vocal tract filter

$(z)=[G(2) V(2)-R(2)]-E(2)

Speech = [vocal fold x vocal tract X lip radiation] x excitation
Methodology: Linear prediction (LP) approach

» Define speech signal as linear combination of past speech samples

S, = Zplaisni +€, S(z)=H(z)-E(z), where H(z) =

_Z|l'

Spectrum part = LP coefficients
Excitation part = Residual signal of LP analysis

S(z) = H(z2)- E(2)

He)) ,/_/ 1 R

Vocal tract

V(z2) . . .
—PS - . . .
(2) g. g. g.
) 5 " o
o o o
27 = 2’ X 2°
C = C 0 =
ator = g g
=7 = =.
= - % _ -
- Frequency (Hz) Frequency (Hz) Frequency (Hz)
E(z)
[Speech production model] [Spectral deconvolution by LP analysis]
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Recorded Excitation | LP synthesis

EXCITNET

Model the excitation signal by WaveNet, instead of speech signal [6]

Training stage
« Extract excitation signal by linear prediction (LP) analysis

P
€, =5, _Zaisn—i
i=1

» Periodically updated filter coefficients matched to frame rate of acoustic feature

» Train WaveNet to model excitation signal

3
. Speech Speech
Synthesis stage signal database signal
. . . Feature .
» Generated excitation signal by WaveNet extraction LP analysis
« Synthesize speech signal by LP synthesis filtering Acouste r 2 Excitation
ecatures N signal
p
— fraining . WaveNet |
Sn - Z ai Sn—i + en Synthesis vocoder Generated
=1 excitation
~ - | signal
LP coefficients
*» LP synthesis
}
Acoustic Synthesized
features speech

[ExcitNet]

18
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SoftMax
Recorded WaveNet ExcitNet
EXCITNET
AN N\ Y\

High quality of synthesized speech even though 8-bit quantization is used

« Overcome the difficulty of spectrum modeling by using external spectral shaping filter

Recorded SoftMax-WaveNet ExcitNet

8000 8000 - = = =

7000 7000

6000 6000
~N
L 5000 5000
Py 3
(6]
C 4000 4000
(0]
o
© 3000 3000
S
L

2000 | 2000

1000 | 1000 F = °

0 N =
1.6 1.8 2 2.4
time (s)

* Independent modeling of excitation and spectrum parts results in unpredictable
prediction error

1 . .
S(z) = E(2) Objective | | N |
1— Zaiz—u Contains error Represent LP synthesis process during WaveNet training / generation
=1

Contains error

19
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Linear prediction

LP-WAVENET

Motivation from the assumption of WaveNet vocoder

1. Previous speech samples, x_,,, are given
2. LP coefficients, {a;}, are given

p
Their linear combination, X, =Y X, , are also given
i=1

Probabilistic analysis

Xy [ (X, h) = (B, + %) [ (X,

=E, | (x_,,h)+X,

h)

X, =€, +X.
 Difference between the random variables X,, and E,, is only a constant value of x,,

Assume the discretized MoL distributed speech

- Shifting property of 2nd order random variable o P lxa) P, (X )
X € 0.016 - ——e—p
7Z-i :ﬁi 0014 | )’Z

x _ e, ¢ Only mean parameters .l
Hi = H X0 are different il

X e
S, =S 0.006 -
1 1 0.004 -

0.002 -

[

-3 -2 -1 0 1 2 3

[Difference of distributions between speech and excitation]
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Recorded ExcitNet LP-WaveNet

Linear prediction

LP-WAVENET

Utilize the causality of WaveNet and the linearity of LP synthesis processes [7]

P, [ X000 h) 1. Mixture parameter prediction
- > [z”,z”,zs]:WaveNet(x<n,h)
Mixture Density Network ] )
(MDN) 2. Mixture parameter refinement
1 1 1 Xan 7 = softmax(z”)
T S n
* =z" + X
Soft- E N Linear h=2 :
¥ max() xp0) \\‘ ‘/ ) combination s=exp(z°®)
Z;T r 3 ZS F Y Z,U F 3 . . .
3. Discretized MoL loss calculation
p(x, [X.,.h) =
WaveNet
N X+Al2—u X=Al2—u
Zﬂ_l|:o_( ﬂlj_a( lulj:|
A A i=1 Si Si
X(H’ :
Acoustic E= Z[_ |Og p(Xn | X s h)]
Features, h n
[LP-WaveNet]
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TUNING OF WAVENET

1. Solution to waveform divergence problem

2. Waveform generation methods
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WAVEFORM DIVERGENCE PROBLEM

Waveform divergence problem

« Waveform divergence by a stacked error during WaveNet’s autoregressive generation

Cause — Overfitting on the silence region
« Unique solution in silence region

Xeurr =WaveNet (X, h) 0=WaveNet(0,hy,)

curr

« Easier to be happen when the portion of silence region in training set is larger
* Be sensitive to tiny error in silence region during waveform generation

Solution — Noise injection

* Inject negligible amount of noise

X =X+¢&-n, where g=2/2'" Xo ~ P(X [X0) -, o
i Bl
« Allowing only 1 bit error X, ~ p(X [ Xy) x

i err, +err,
X, ~ p(xz |X<2)b’ ° !

> err,

Xn - p(xn |X<n)’i i

* Increase robustness to the prediction error
in silence region

[Error stacking during waveform generation)

23
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WAVEFORM GENERATION METHODS

Random sampling

Reana (M) ~ P(X(n) | x(k <), h)

Argmax sampling

R (1) = argmax p(x(n) | x(k <), h)

Greedy sampling [8]

Rgreedy (n)=vuv-X_ . (N)+@-vuv)-X .4 (N)

Mode sampling [7]

)zmode (n) =Vuv- X (n) + (1_ VUV) ) )A(rand (n)

rand ,nar

« Sharper distribution on voiced region

|
Reang (N) ~ Z”iDiStLogiC(ﬂi ,S;)

i=1

|
)zrand ,narr (n) = Z T, DlStLOgIC [lul ,%j

i=1

YONSEI UNIVERSITY

Recorded

Random
sampling

max

-5 -4 -3 -2 -1 0 1 2 3 4 5

[Random & argmax sampling]

[Scale parameter control in mode sampling]

Argmax
sampling

Greedy Mode
sampling sampling
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EXPERIMENTS
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EXPERIMENTS

Network architecture

Database

Korean male: MBC YBS database

Training / validation / Test

2,500 (~3.2h) / 200 / 200

Minibatch size

4 GPU x 20000 samples

Dilation 3*[1,2,4,8 16, 32, 64, 128, 256, 512]
Layer 30
Receptive field 3070 samples
Residual chn. 128
Skip chn. 128

Quantization

65536 uniform

Number of mixture

10 mixture components --> 30 output channels

Conditioning features

Voicing flag, LSF, FO (log), Eng (log), BAP

Normalization

Gaussian normalization

Learning rate

1.00E-04

Initialization / optimizer

Xavier / Adam

Sample generation method

Mode sampling

Systems

* WNs: MDN-WaveNet that models the speech signal
* WN;: MDN-WaveNet that models the excitation signal
* WN;,: Proposed LP-WaveNet

YONSEI UNIVERSITY
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LEARNING CURVE

Training loss

Loss

Training speed
WNLP = WNE > WNS

iteration x10°

27
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A/S: analysis / synthesis
SPSS: synthesis by predicted acoustic features

OBJECTIVE EVALUATION

Performance measurements

* VUV: Voicing error rate (%)

* FO RMSE: FO root mean square error (Hz) in voiced region

« LSD: Log-spectral distance of AR spectrum (dB)

* F-LSD: LSD of synthesized speech in frequency domain (dB)

Results

Table 1. Objective evaluation results of the various WaveNet
vocoders with analysis and synthesis (A/S) and statistical
parametric speech synthesis (SPSS) systems. The system
with highest performance is represented in bold typeface.

VUV | FORMSE | LSD | F-LSD
(%) (Hz) (dB) | (dB)
WNg 3.62 3.98 2.22 7.7
A/S WNg 3.29 3.31 1.98 6.97
WN; p 3.15 3.30 2.05 6.87
WNg 6.33 15.55 5.01 11.35
SPSS WNEg 6.35 15.23 494 | 11.39
WN.p 6.56 15.17 495 | 11.28

System

28
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A/S: analysis / synthesis
SPSS: synthesis by predicted acoustic features

SUBJECTIVE EVALUATION

Mean opinion score (MOS) test

« 20 random synthesized utterances from test set
« 12 native Korean speakers
* Include STRAIGHT (STR)-based speech synthesis system as baseline [9]

Results

Table 2. Subjective mean opinion score (MOS) test result
with a 95% confidence interval for various speech synthesis
systems. The system with highest score is represented in
bold typeface. The MOS result of recorded speech was 4.81.

“ STR WNg WNg WN.p

A/S || 2.83+0.19 | 4784+0.08 | 4.58+0.08 | 4.84+0.11
SPSS || 2.80+0.12 | 4.14+0.16 | 3.67+0.20 | 4.04+0.12

29
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SAMPLES

Recorded

STRAIGHT - A/S

WN; — A/S

WN,, —A/S

&) YONSEI UNIVERSITY

A/S: analysis / synthesis
SPSS: synthesis by predicted acoustic features

STRAIGHT - SPSS

WN; — SPSS

WN; — SPSS

WN, , — SPSS
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SUMMARY & CONCLUSION

Investigated various types of WaveNet vocoder

+ SoftMax-WaveNet
* MDN-WaveNet
* ExcitNet

Proposed an LP-WaveNet

« Explicitly represent linear prediction structure of speech waveform into WaveNet framework

Introduced tuning methods of WaveNet training / generation

* Noise injection
« Sample generation methods

Performed experiment in objective and subjective manner

» Achieve faster convergence speed than conventional WaveNet vocoders, whereas keep
similar speech quality

31
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