TOWARD WAVENET SPEECH SYNTHESIS

2018. 12. 11 DSP & Al Lab Min-Jae Hwang

PROFILE

Min-Jae Hwang

- Affiliation : 7th semester of MS/Ph.D. student
 DSP & AI Lab., Yonsei Univ., Seoul, Korea
- Adviser : Prof. Hong-Goo Kang
- E-mail : <u>hmj234@dsp.yonsei.ac.kr</u>

Work experience

- 2017.12 ~ 2017.12 Intern at NAVER corporation
- 2018.01 ~ 2018.11 Intern at Microsoft Research Asia

Research area

- 2015.8 ~ 2016.12 Audio watermarking
 - **M. Hwang**, J. Lee, M. Lee, and H. Kang, "사전 분석법을 통한 스프레드 스펙트럼 기반 오디오 워터마킹 알고리즘의 성능 향상," 한국음향학회 제 33회 음성통신 및 신호처리 학술대회, 2016
 - M. Hwang, J. Lee, M. Lee, and H. Kang, "SVD-based adaptive QIM watermarking on stereo audio signals," in IEEE Transactions on Multimedia, 2017
- 2017.1 ~ Present Deep learning-based statistical parametric speech synthesis
 - M. Hwang, E. Song, K. Byun, and H. Kang, "Modeling-by-generation structure-based noise compensation algorithm for glottal vocoding speech synthesis syste m," in ICASSP, 2018
 - M. Hwang, E. Song, J. Kim, and H. Kang, "A unified framework for the generation of glottal signals in deep learning-based parametric speech synthesis systems," in Interspeech, 2018
 - M. Hwang, F. Soong, F. Xie, X. Wang, and H. Kang, "LP-WaveNet: linear prediction-based WaveNet speech synthesis," in ICASSP, 2019 [Submitted]

CONTENTS

Introduction

Story of WaveNet vocoder

Various types of WaveNet vocoders

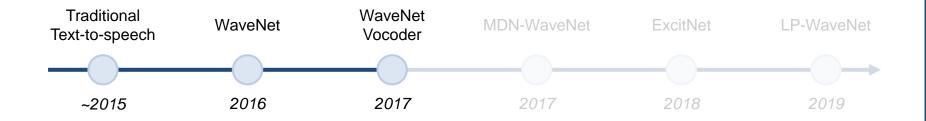
- SoftMax-WaveNet
- MDN-WaveNet
- ExcitNet
- Proposed LP-WaveNet

Tuning of WaveNet

- Noise injection
- Waveform generation methods

Experiments

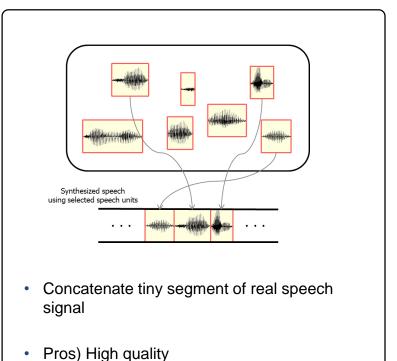
Conclusion & Summary



INTRODUCTION

Story of WaveNet vocoder

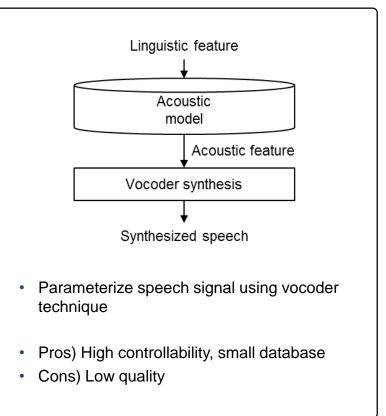
Text-to-speech **CLASSICAL TTS SYSTEMS**



Unit-selection speech synthesis [1]

- Pros) High quality
- Cons) Low controllability, large database •

Statistical parametric speech synthesis (SPSS) [2]



GENERATIVE MODEL-BASED SPEECH SYNTHESIS

WaveNet [3]

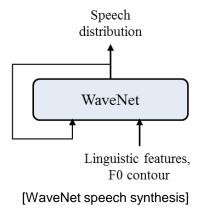
· First generative model for raw audio waveform

$$p(\mathbf{x}) = \prod_{n=1}^{N} p(x_n \mid \mathbf{x}_{< n})$$

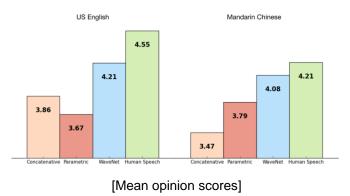
- · Predict the probability distribution of waveform sample auto-regressively
- · Generate high quality of audio / speech signal
 - Impact on the task of TTS, voice conversion, music synthesis, etc.

WaveNet in TTS task

• Utilize *linguistic features* and *F0 contour* as a conditional information

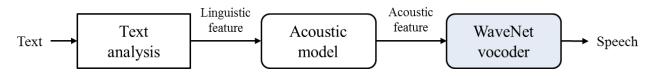


• Present higher quality than the conventional TTS systems



WAVENET VOCODER-BASED SPEECH SYNTHESIS

Utilize WaveNet as parametric vocoder [4]

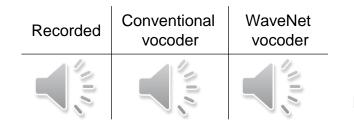


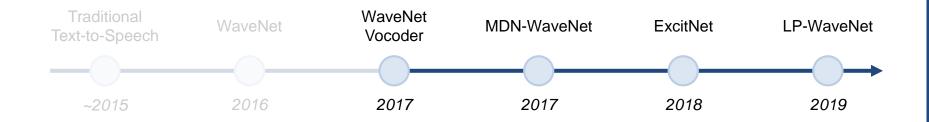
[WaveNet vocoder based parametric speech synthesis]

· Use acoustic features as conditional information

Advantages

- Higher quality synthesized speech than the conventional vocoders
 - Don't require hand-engineered processing pipeline
- · Higher controllability than the case of linguistic features
 - Controlling acoustic features
- Higher training efficiency than the case of linguistic features
 - Linguistic feature: 25~35 hour database
 - · Acoustic feature: 1 hour database





VARIOUS TYPES OF WAVENET VOCODERS

- 1. SoftMax-WaveNet
- 2. MDN-WaveNet
- 3. ExcitNet
- 4. Proposed LP-WaveNet

Auto-regressive generative model

Predict probability distribution of speech samples

$$p(\mathbf{x}) = \prod_{n=1}^{N} p(x_n \mid \mathbf{x}_{n-R:n-1})$$

• Use past waveform samples as a condition information of WaveNet

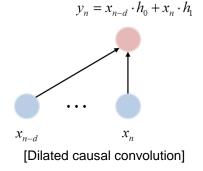
Problem: Long-term dependency nature of speech signal

- Highly correlated speech signal in high sampling rate, e.g. 16000 Hz
 - E.g. 1) At least 160 (=16000/100) speech samples to represent 100Hz of voice correctly
 - E.g. 2) Averagely 6,000 speech samples to represent single word¹

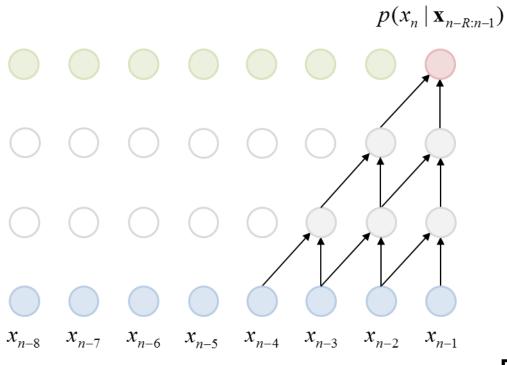
Effective embedding method of long receptive field is required

Solution

- Put the speech samples as an input of dilated causal convolution layer
- · Stack the dilated causal convolution layer
 - Result in exponentially growing receptive field



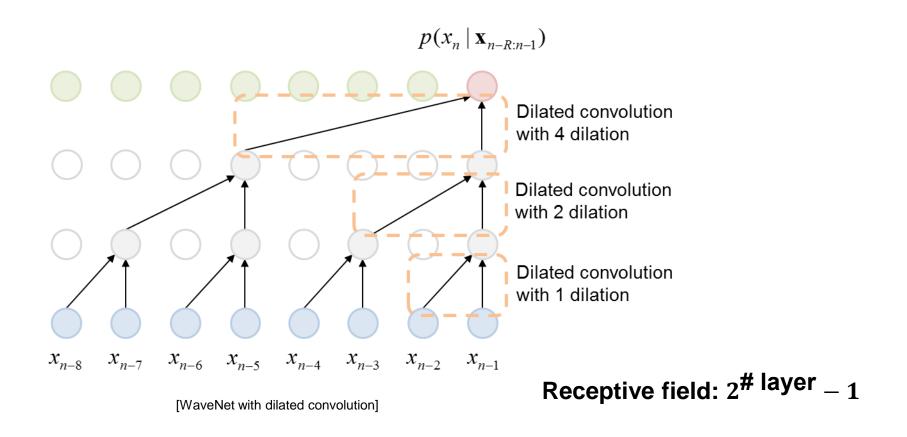
WaveNet without dilation

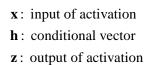


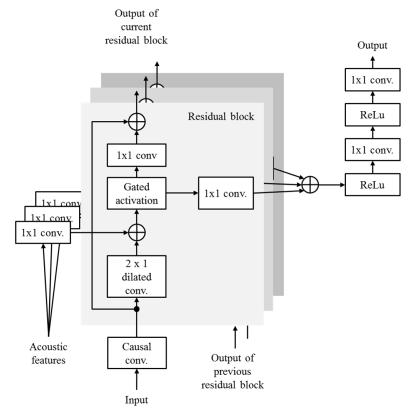
[WaveNet without dilated convolution]

Receptive field: # layer - 1

WaveNet with dilation







[Basic WaveNet architecture]

Multiple stack of residual blocks

1. Dilated causal convolution

$$y[d,n] = \sum_{k=0}^{M-1} h[k]x[n-d\cdot k]$$

- Exponentially increase the receptive field
- 2. Gated activation

 $\mathbf{z} = \tanh\left(W_{f} * \mathbf{x} + V_{f} * \mathbf{h}\right) \odot \operatorname{sigmoid}\left(W_{g} * \mathbf{x} + V_{g} * \mathbf{h}\right)$

- Impose non-linearity on the model
- Enable conditional WaveNet
- 3. Residual / skip connections
 - Speed up the convergence
 - Enable deep layered model training

SOFTMAX-WAVENET

Use WaveNet as multinomial logistic regression model [4]

• μ-law companding for evenly distributed speech sample

$$y = sign(x) \cdot \frac{\ln(1+\mu|x|)}{\ln(1+\mu)}, \ \mu = 255$$

- 8-bit one-hot encoding
 - $p = OneHot_{8bit}(y)$
 - 256 symbols

Estimate each symbol using WaveNet

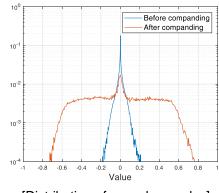
$$\mathbf{z}^{q} = WaveNet(\mathbf{q}_{
$$q_{n} = \frac{\exp(z_{n}^{q})}{\sum_{i} \exp(z_{i}^{q})}$$$$

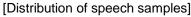
• Predict the sample by SoftMax distribution

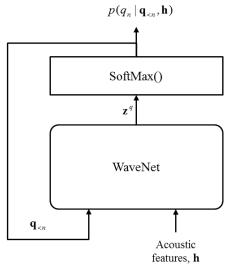
Optimize network by cross-entropy (CE) loss

 $L = \sum_{n} \left[-p_n \log q_n \right]$

• Minimize the probabilistic distance between p_n and q_n





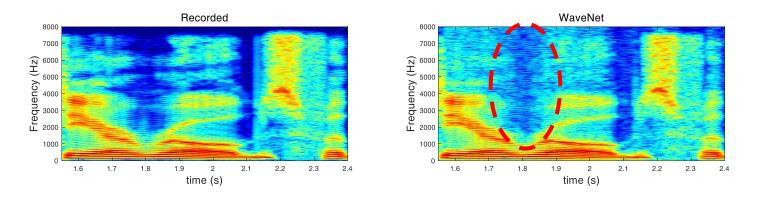


[SoftMax-WaveNet]

SOFTMAX-WAVENET

Limitation by the usage of 8-bit quantization

· Noisy synthetic speech due to insufficient number of quantization bits



Intuitive solution

Expand the SoftMax dimension to 65,536 corresponds to 16-bit quantization
 → High computational cost & difficult to train

Mixture density network (MDN)-based solution [5]

• Train the WaveNet to predict the parameter of pre-defined speech distribution

Mixture density network

Define the distribution of waveform sample as parameterized form [5]

• Discretized mixture of logistic (MoL) distribution

$$p(x) = \sum_{n=1}^{N} \overline{\pi_n} \left[\sigma \left(\frac{x + \Delta/2 - \mu_n}{(s_n)} \right) - \sigma \left(\frac{x - \Delta/2 - \mu_n}{s_n} \right) \right]$$

• Discretized logistic mixture with 16bit quantization ($\Delta = 1/2^{16}$)

Estimate mixture parameters by WaveNet

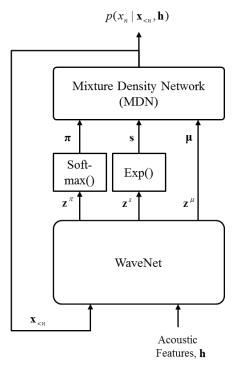
 $[\mathbf{z}^{\pi}, \mathbf{z}^{\mu}, \mathbf{z}^{s}] = WaveNet(\mathbf{x}_{< n}, \mathbf{h})$

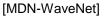
 $\pi = \operatorname{softmax}(\mathbf{z}^{\pi})$, for unity-summed mixture gain $\mu = \mathbf{z}^{\mu}$

$$\mathbf{s} = \exp(\mathbf{z}^{s})$$
, for positive value of mixture scale

Optimize network by negative log-likelihood (NLL) loss

$$L = \sum_{n} \left[-\log p(x_n \mid x_{< n}, \mathbf{h}) \right]$$





Mixture density network

Higher quality than SoftMax-WaveNet

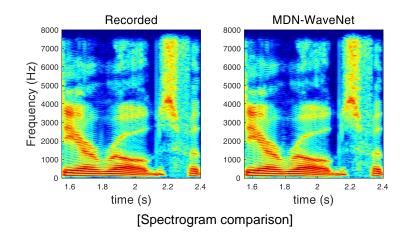
- Enable to model the speech signal by 16-bit
- Overcome difficulty of spectrum modeling

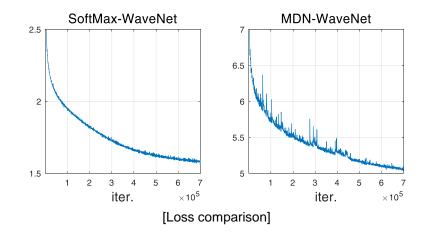
Difficulty of WaveNet training

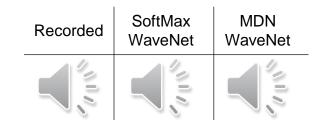
Due to increased quantization bit from 8-bit to 16-bit

Solution based on the human speech production model [6]

• Model the vocal source signal, whose physical behavior is much simpler than the speech signal







SPEECH PRODUCTION MODEL

Concept

• Modeling the speech as the filtered output of vocal source signal to vocal tract filter

 $S(z) = [G(z) \cdot V(z) \cdot R(z)] \cdot E(z)$

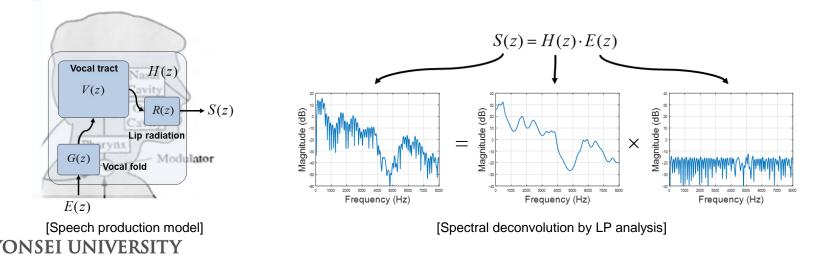
Speech = [vocal fold \times vocal tract \times lip radiation] \times excitation

Methodology: Linear prediction (LP) approach

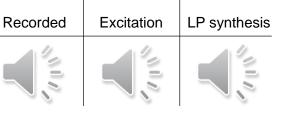
· Define speech signal as linear combination of past speech samples

$$s_n = \sum_{i=1}^{p} \alpha_i s_{n-i} + e_n$$
 $S(z) = H(z) \cdot E(z)$, where $H(z) = \frac{1}{1 - \sum_{i=1}^{p} \alpha_i z^{-i}}$

Spectrum part = LP coefficients Excitation part = Residual signal of LP analysis



EXCITNET



Model the excitation signal by WaveNet, instead of speech signal [6]

Training stage

• Extract excitation signal by linear prediction (LP) analysis

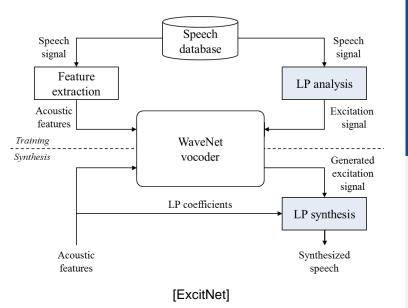
 $e_n = s_n - \sum_{i=1}^P \alpha_i s_{n-i}$

- · Periodically updated filter coefficients matched to frame rate of acoustic feature
- Train WaveNet to model excitation signal

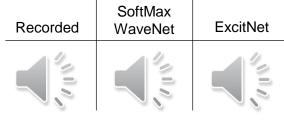
Synthesis stage

- Generated excitation signal by WaveNet
- Synthesize speech signal by LP synthesis filtering

$$s_n = \sum_{i=1}^p \alpha_i s_{n-i} + e_n$$

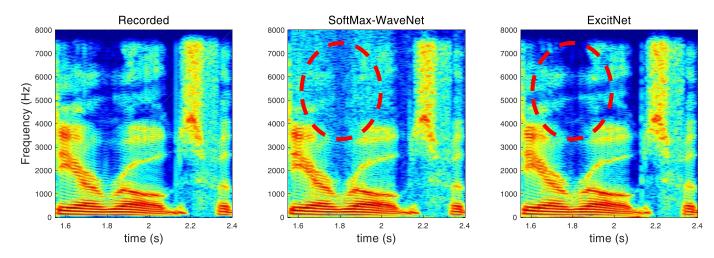


EXCITNET



High quality of synthesized speech even though 8-bit quantization is used

• Overcome the difficulty of spectrum modeling by using external spectral shaping filter



Limitation

 Independent modeling of excitation and spectrum parts results in unpredictable prediction error

$$S(z) = \frac{1}{1 - \sum_{i=1}^{p} \alpha_i z^{-i}} \cdot \frac{E(z)}{Contains \ error}$$

Objective

Represent LP synthesis process during WaveNet training / generation

Linear prediction

Motivation from the assumption of WaveNet vocoder

- 1. Previous speech samples, $\mathbf{x}_{< n}$, are given
- 2. LP coefficients, $\{\alpha_i\}$, are given

Their linear combination, $\hat{x}_n = \sum_{i=1}^p \alpha_i x_{n-i}$, are also given

Probabilistic analysis

$$x_n = e_n + \hat{x}_n$$

$$X_n | (\mathbf{x}_{< n}, \mathbf{h}) = (E_n + \hat{x}_n) | (\mathbf{x}_{< n}, \mathbf{h})$$

$$= E_n | (\mathbf{x}_{< n}, \mathbf{h}) + \hat{x}_n$$

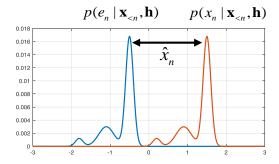
• Difference between the random variables X_n and E_n is only a constant value of \hat{x}_n

Assume the discretized MoL distributed speech

• Shifting property of 2nd order random variable

$$\pi_i^x = \pi_i^e$$
$$\mu_i^x = \mu_i^e + \hat{x}_n$$
$$s_i^x = s_i^e$$

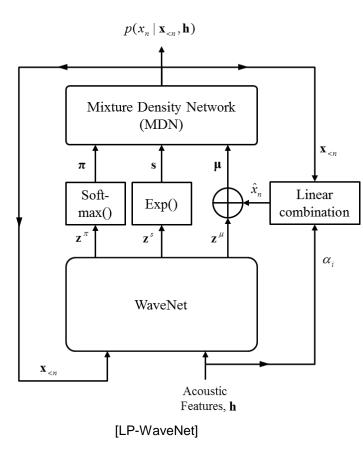
Only mean parameters are different



[Difference of distributions between speech and excitation]

Linear prediction

Utilize the causality of WaveNet and the linearity of LP synthesis processes [7]



1. Mixture parameter prediction

$$\begin{bmatrix} \mathbf{z}^{\pi}, \mathbf{z}^{\mu}, \mathbf{z}^{s} \end{bmatrix} = WaveNet(\mathbf{x}_{< n}, \mathbf{h})$$

- 2. Mixture parameter refinement
 - $\pi = \operatorname{softmax}(\mathbf{z}^{\pi})$

$$\boldsymbol{\mu} = \mathbf{z}^{\mu} + \hat{x}_{n}$$
$$\mathbf{s} = \exp(\mathbf{z}^{s})$$

3. Discretized MoL loss calculation

$$p(x_n | \mathbf{x}_{< n}, \mathbf{h}) =$$

$$\sum_{i=1}^{N} \pi_i \cdot \left[\sigma \left(\frac{x + \Delta / 2 - \mu_i}{s_i} \right) - \sigma \left(\frac{x - \Delta / 2 - \mu_i}{s_i} \right) \right]$$

$$E = \sum_n \left[-\log p(x_n | \mathbf{x}_{< n}, \mathbf{h}) \right]$$

TUNING OF WAVENET

1. Solution to waveform divergence problem

2. Waveform generation methods

WAVEFORM DIVERGENCE PROBLEM

Waveform divergence problem

• Waveform divergence by a stacked error during WaveNet's autoregressive generation

Cause – Overfitting on the silence region

• Unique solution in silence region

 $x_{curr} = WaveNet(\mathbf{x}_{prev}, \mathbf{h}) \qquad 0 = WaveNet(\mathbf{0}, \mathbf{h}_{sil})$

- · Easier to be happen when the portion of silence region in training set is larger
- · Be sensitive to tiny error in silence region during waveform generation

Solution – Noise injection

· Inject negligible amount of noise

$$\hat{\mathbf{x}} = \mathbf{x} + \varepsilon \cdot \mathbf{n}$$
, where $\varepsilon = 2/2^{16}$

- Allowing only 1 bit error
- Increase robustness to the prediction error in silence region

$$x_{0} \sim p(x_{0} | \mathbf{X}_{<0})$$

$$x_{1} \sim p(x_{1} | \mathbf{X}_{<1})$$

$$x_{2} \sim p(x_{2} | \mathbf{X}_{<2})$$

$$\vdots$$

$$x_{n} \sim p(x_{n} | \mathbf{X}_{

$$i = \sum_{i} err_{i}$$$$

WAVEFORM GENERATION METHODS

 $\frac{s_i}{c}$

Random sampling

 $\hat{x}_{rand}(n) \sim p(x(n) \mid x(k < n), \mathbf{h})$

Argmax sampling

 $\hat{x}_{\max}(n) = \arg \max_{x(n)} p(x(n) \mid x(k < n), \mathbf{h})$

Greedy sampling [8]

$$\hat{x}_{greedy}(n) = vuv \cdot \hat{x}_{max}(n) + (1 - vuv) \cdot \hat{x}_{rand}(n)$$

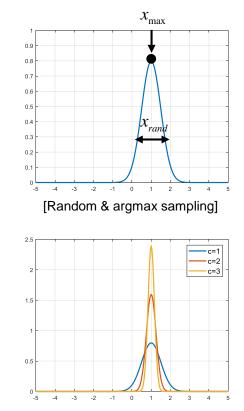
Mode sampling [7]

$$\hat{x}_{mode}(n) = vuv \cdot \hat{x}_{rand,nar}(n) + (1 - vuv) \cdot \hat{x}_{rand}(n)$$

Sharper distribution on voiced region

$$\hat{x}_{rand}(n) \sim \sum_{i=1}^{I} \pi_i DistLogic(\mu_i, s_i)$$

$$\hat{x}_{rand, narr}(n) \sim \sum_{i=1}^{I} \pi_i DistLogic\left(\mu_i\right)$$



[Scale parameter control in mode sampling]

Recorded	Random sampling	Argmax sampling	Greedy sampling	Mode sampling
2000			20100	

EXPERIMENTS

EXPERIMENTS

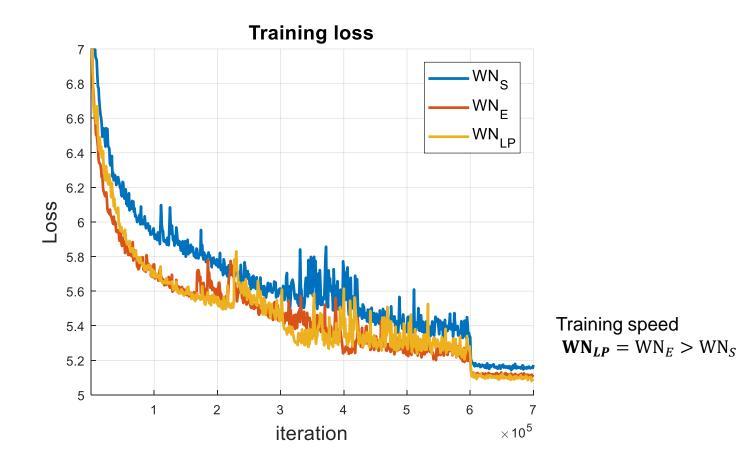
Network architecture

Database	Korean male: MBC YBS database		
Training / validation / Test	2,500 (~3.2h) / 200 / 200		
Minibatch size	4 GPU x 20000 samples		
Dilation	3 * [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]		
Layer	30		
Receptive field	3070 samples		
Residual chn.	128		
Skip chn.	128		
Quantization	65536 uniform		
Number of mixture	10 mixture components> 30 output channels		
Conditioning features	Voicing flag, LSF, F0 (log), Eng (log), BAP		
Normalization	Gaussian normalization		
Learning rate	1.00E-04		
Initialization / optimizer	Xavier / Adam		
Sample generation method	Mode sampling		

Systems

- WN_S: MDN-WaveNet that models the speech signal
- WN_E: MDN-WaveNet that models the excitation signal
- WN_{LP}: Proposed LP-WaveNet

LEARNING CURVE



A/S: analysis / synthesis SPSS: synthesis by predicted acoustic features

OBJECTIVE EVALUATION

Performance measurements

- VUV: Voicing error rate (%)
- F0 RMSE: F0 root mean square error (Hz) in voiced region
- LSD: Log-spectral distance of AR spectrum (dB)
- F-LSD: LSD of synthesized speech in frequency domain (dB)

Results

Table 1. Objective evaluation results of the various WaveNet vocoders with analysis and synthesis (A/S) and statistical parametric speech synthesis (SPSS) systems. The system with highest performance is represented in bold typeface.

	Sustam	VUV	F0 RMSE	LSD	F-LSD
	System		(Hz)	(dB)	(dB)
	WN _S	3.62	3.98	2.22	7.7
A/S	WN_E	3.29	3.31	1.98	6.97
	WN_{LP}	3.15	3.30	2.05	6.87
	WN _S	6.33	15.55	5.01	11.35
SPSS	WN_E	6.35	15.23	4.94	11.39
	WN_{LP}	6.56	15.17	4.95	11.28

A/S: analysis / synthesis SPSS: synthesis by predicted acoustic features

SUBJECTIVE EVALUATION

Mean opinion score (MOS) test

- 20 random synthesized utterances from test set
- 12 native Korean speakers
- Include STRAIGHT (STR)-based speech synthesis system as baseline [9]

Results

Table 2. Subjective mean opinion score (MOS) test resultwith a 95% confidence interval for various speech synthesissystems. The system with highest score is represented inbold typeface. The MOS result of recorded speech was 4.81.

	STR	WN_S	WN_E	WN_{LP}
A/S	2.83 ± 0.19	$4.78{\pm}0.08$	$4.58{\pm}0.08$	$\textbf{4.84}{\pm 0.11}$
SPSS	2.80 ± 0.12	4.14±0.16	$3.67 {\pm} 0.20$	4.04 ± 0.12

A/S: analysis / synthesis SPSS: synthesis by predicted acoustic features

SAMPLES

Recorded

 $WN_S - A/S$

 $WN_E - A/S$

 $WN_{LP} - A/S$

STRAIGHT – SPSS

 $WN_S - SPSS$

 $WN_E - SPSS$

 $WN_{LP} - SPSS$

SUMMARY & CONCLUSION

Investigated various types of WaveNet vocoder

- SoftMax-WaveNet
- MDN-WaveNet
- ExcitNet

Proposed an LP-WaveNet

• Explicitly represent linear prediction structure of speech waveform into WaveNet framework

Introduced tuning methods of WaveNet training / generation

- Noise injection
- Sample generation methods

Performed experiment in objective and subjective manner

 Achieve faster convergence speed than conventional WaveNet vocoders, whereas keep similar speech quality

References

[1] A. J. Hunt and A. W. Black, "Unit selection in a concatenative speech synthesis system using a large speech database," in *Proc. ICASSP*, 1996

[2] H. Zen, et. al. "Statistical parametric speech synthesis using deep neural networks," in *Proc. ICASSP*, 2013.

[3] A. van den Oord, et. al., "WaveNet: A generative model for raw audio generation," in CoRR, 2016.

[4] A.Tamamori, et. al., "Speaker-dependent wavenet vocoder," in INTERSPEECH, 2017.

[5] A. van den Oord, et. al., "Parallel WaveNet: Fast High-fidelity speech synthesis," in CoRR, 2017

[6] E. Song, K. Byun, and H.-G. Kang, "A neural excitation vocoder for statistical parametric speech synthesis systems," *in Arxiv*, 2018.

[7] M. Hwang, F. Soong, F. Xie, X. Wang, and H. Kang, "LP-WaveNet: Linear Prediction-based WaveNet Speech Synthesis," *Submitted to Proc. ICASSP*, 2019.

[8] W. Xin, et. al., "A comparison of recent waveform generation and acoustic modeling methods for neural-network-based speech synthesis," in *Proc. ICASSP*, 2018.

[9] H. Kawahara, "STRAIGHT, exploration of the other aspect of vocoder: Perceptually isomorphic decomposition of speech sounds," *Acoustical Science and Technology*, 2006.

Thank you!

